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Birefringence is the optical property of a material hav-
ing a refractive index which depends on the polarization 
and propagation direction of light[1,2]. In optical fibers, 
the birefringence effect is detrimental for a variety of 
reasons, among which the Brillouin gain depends on 
the state of polarization in the fiber[3–7] and unintended 
birefringence causes the polarization of the optical field 
to change during propagation through the fiber. The 
local refractive index changes associated with density 
fluctuations changes the shape of Brillouin spectrum, 
causing errors in distributed temperature and strain 
measurement[6–11]. 

Currently, there exist works which have investigated 
the polarization effects on stimulated Brillouin scatter-
ing (SBS) in optical fibers[3,5,7,12] which have shown that 
the Stokes gain is strongly dependent on polarization 
effects. In Ref. [13], a vector formalism was used to 
characterize the effects of birefringence on the SBS in-
teraction; however, only linearly polarized pump wave 
(PW) and signal wave were investigated, for which an 
undepleted pump regime was assumed. The above-
mentioned works[5,7,12,13] also treat a steady-state SBS 
system where both the PW and Stokes wave (SW) are 
continuous. Additionally, none of these references in-
vestigated the effect of birefringence and polarization 
effects on the spectral distortion. In Ref. [4], though 
pulse length was taken into account, Brillouin spectrum 
distortion was not considered. More importantly, the 
impact of the nonlinear effect under different pump 
powers convoluted with the fiber birefringence and its 
impact on the Brillouin spectrum shape and peak shift 
have not been examined yet. None of the aforemen-
tioned works took into consideration the most general 
case of birefringence, which is elliptical birefringence, or 
the effects of this birefringence on the combined Bril-
louin gain and loss regime in an optical fiber. 

A more accurate model of the polarization-dependent 
Brillouin gain and loss interaction, which includes the 

case of elliptical birefringence is needed. The model pre-
sented here describes the most comprehensive equations 
considering the birefringence effects in an optical fiber. 
Being an extension of the work presented in Ref. [14],  
which described the SBS interaction in a birefringent 
fiber, this model includes the most general case of el-
liptical birefringence, the effects of polarization mode 
dispersion (PMD), polarization-dependent loss (PDL), 
phonon resonance structures, pulse length, as well as 
the overall attenuation of the fiber. 

For sensing applications involving optical differen-
tial parametric amplification in Brillouin optical time 
domain analysis (ODPA-BOTDA) systems[10,11], which 
employ both SW and anti-SW (ASW) pulses, this in-
vestigation of the effects of birefringence on the com-
bined Brillouin gain and loss is paramount. Addition-
ally, since spectral distortion is detrimental in sensing 
applications, it is important to investigate a power re-
gime in which birefringence effects are minimal. 

The process of Brillouin gain and loss is studied in a 
birefringent polarization-maintaining optical fiber, with 
a core radius of 4.1 μm. The configuration comprises a 
PW launched from one end, and a SW and an ASW 
launched from the other end. The PW, SW, and ASW 
have x- and y- eigen-polarization components. The sche-
matic arrangement is shown in Fig. 1.

The extended system of Eqs. (1)–(6) describes the 
interaction of the PW, SW, and ASW (Fig. 1) includ-
ing the effects of PMD and PDL, similar to the system 
presented in Ref. [14]. Other than the usual slowly 
varying amplitude approximation, the only additional 

Fig. 1. Schematic arrangement of SBS in an optical fiber of 
length L. E1x and E1y, PWs; E2x and E2y, SWs; E3x and E3y, 
ASWs.
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For the SW, we have ΩSW
Bxx = (v/c)(n1xω1+n2xω2), ΩSW

Byy 
= (v/c)(n1yω1+n2yω2), ΩSW

Bxy = (v/c)(n1xω1+n2yω2), ΩSW
Byx 

= (v/c)(n1yω1+n2xω2), and for the ASW we have ΩASW
Bxx = 

(v/c)(n1xω1+n3xω2), ΩASW
Byy = (v/c)(n1yω1+n3yω2), ΩASW

Bxy 
= (v/c)(n1xω1+n3yω2), ΩASW

Byx = (v/c)(n1yω1+n3xω2), which 
are the Brillouin frequencies associated with the princi-
pal axes beatings[6], where ω1 is the angular frequency 
of the PW, and ω2 and ω3 are the angular frequencies 
of the SW and ASW, respectively. nij, i = 1, 2, 3, j = 
x, y, are the indices of refraction associated with the 
principal axes of the PW, SW, and ASW, respectively. 
Ω1 = ω1-ω2 is the angular frequency of the AW1 caused 

approximation in establishing Eqs. (1)–(6) is the as-
sumption that the phonon fields are established almost 
simultaneously, which is not a bad approximation for 
the majority of practical cases[1,15].
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by the interaction of the PW and SW, and Ω2 = ω3-
ω1 is the angular frequency of the AW2 caused by the 
interaction of the PW and ASW. Eij, i = 1, 2, 3, j = 
x, y, are the complex amplitudes of the PW, SW, and 
the ASW, respectively. c is the speed of light, ρ0 is the 
mean density of the fiber, γe is the electrostrictive con-
stant, z is the coordinate along the fiber, v is the speed 
of sound in the fiber, ΓB is the Brillouin linewidth, and 
finally, αij, i = 1, 2, 3, j = x, y, represent the fiber at-
tenuations of the principal axes of polarization of the 
three interacting waves.

S1x, S1y, S2x, S2y, S3x, and S3y represent the Stokes 
vectors in the Poincaré sphere polarization represen-
tation[16,17], and are used to define the polarization of 
the propagating lights[2,14,16,17]. In this case, if Sx1 is de-
fined as Sx1 = (a, b, c), then Sy1 = (-a, -b, -c), Sx2 =  
(a, b, -c), Sy2 = (-a, -b, c), Sx3 = (a, b, -c), and  
Sy3 = (-a, -b, c), where a, b, and c are the Stokes vec-
tor components normalized such that a2 + b2 + c2 = 1.  
From this arrangement it is apparent that for fibers 
having elliptical birefringence (0 < |c| < 1), the most 
general beating situation will be excited.

The remaining simplification included making the bi-
refringence effect more explicit, jutstified by the fact 
that birefringence and PDL are both small. It is defined 
that in  = (nix + niy)/2, in∆  = nix-niy, ia  = (αix + αiy)/2,  

ia∆  = αix-αiy, i = 1, 2, 3. 
In the above arrangement, the PW input parameters 

are known only at the beginning of the fiber, that is, 
at z = 0. Correspondingly, the SW and ASW input pa-
rameters are known only at the end of the fiber, that is, 
at z = L, where L is the length of the fiber. Therefore, 
the boundary conditions for the system of Eqs. (1)–(6) 
are similar to previously studied configurations with 
one pulse[6,18,19]. The conditions for two pulses are as fol-
lows: |Eij(0)|2 = E2

ij0, i = 1, 2, 3, j = x, y, where E2
ij0 are 

the known squared absolute values of the complex fields 
E1j, respectively. In Eqs. (1)–(6), we have employed the 
dimensionless length variable /z L=� , and the dimen-
sionless time variable / ct tt = , where tc = L∙navg/c is 
the transit time and navg is the average index of re-
fraction. The dimensionless intensity variables are de-
fined as the ratio of powers: Yij = Pij/Pij0, i = 1, 2, 3,  
j = x, y. Additionally, εij are the dimensionless loss 
terms, defined as ɛij = 2Lαij, i = 1, 2, 3, j = x, y. The 
form factor component of the β-coefficients is defined as  
ξij

SW = (ΩBij-Ω1)/(ΓB/2) or ξijASW = (ΩBij-Ω2)/(ΓB/2), 
where i = x, y and j = x, y. The method of character-
istics was employed as in Refs. [2,14,20,21] and the fol-
lowing change of variables was used: u = (1/ n )τ + ℓ and 
v = (1/ n )τ-ℓ, where the approximation nnn =≈ 21  
was employed. The resulting system of equations is as 
follows, with β-coefficients as defined by 
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The change of variables u and v transforms the system 
of Eqs. (1)––(6) of counter-propagating waves into the 
system of Eqs. (7)–(12) of co-propagating waves, where 
k is the wavevector and r is the radius of the fiber. 
Consequently, we are able to set the initial condition 
as ( ) ( )( ) ( )( )0 1 1 2 2,0 tanh tanh 1ijY t a t b a t b   = − ⋅ − − +    , 
each of which takes place at the same end of the new 
coordinate system, where i = 1, 2, 3 and j = x, y. The 
parameters a1 and a2 determine the rise time of the 
PW, SW, and ASW pulse profiles, whereas the param-
eters b1 and b2 define the center of the pulses via the 
expression |b2-b1|/2. 

Although there exist many numerical methods of 
solution for SBS equations[20,21], the sixth-order Runge-
Kutta method was used to numerically solve the sys-
tem of Eqs. (7)–(12), and was chosen for its stability 
and relatively large step size[22]. 

Output spectra were calculated by detuning the 
Stokes and anti-Stokes frequencies, ω2 and ω3, synchro-
nously, as done in the typical experimental setup[6,7,23]. 
Output powers were calculated as Pij-out = Pij0 Yij-out, i = 
1, 2, 3, and j = x, y, and the total power of the PW, 
SW, and ASW was calculated to be Pi = Pix + Piy, i = 
1, 2, 3. Also, the attenuation in the fiber has been ap-
proximated as αij = α = 0.2 dB/km, i = 1, 2, 3 , and 
j = x, y, which is a valid simplification for short fiber 
lengths, such as the one used in this work. The fol-
lowing parameters of the fiber were used: navg = 1.45, 
r = 4.1 μm, γe = 0.902, λ = 1550 nm, ρ0 = 2.21 g/cm3,  
v = 5616 m/s, L = 45 m, and ΓB = 0.1 GHz. 

For sensing applications such as the ODPA-BOTDA 
systems[10,11], the pump and pulse powers are chosen 
to be relatively low, with Ppump > Ppulse. In addition, 
the ODPA system functions ideally when the SW and 
ASW are balanced, causing the gain and loss to elimi-
nate each other, creating a “similar” effect to the sub-
traction process in the differential pulse–width pair 
BOTDA in the electric domain. For this reason, for the 

simulations performed in this letter, the PW was given 
a power of P1x = P1y = 1 mW, whereas the SW and 
ASW were given increasing powers from P2x = P 2y = P3x 
= P3y = 0.1 to 0.9 mW in nine different simulations. El-
liptical birefringences of Δn = 10-4, 10-5, and 10-6 were 
investigated, and compared with the case of negligible 
birefringence, Δn = 10-10. A random elliptical polariza-
tion is assigned to the pulses, having a Stokes vector  
S = (0.1, 0.9, 0.424)[14]. A pulse length of 7.5 ns has 
been chosen for the SW and ASW, respectively, and 
the resolution of the detuning axis is about 1 MHz.

Here the gain dominant regime is investigated. Pulse 
powers have been chosen to be between 0.1 and 0.6 mW.  
As can be seen from Fig. 2, the output pump spec-
tra look substantially Lorentzian, since for the powers 
chosen, the combined Brillouin gain and loss operates 
in the gain dominant regime. With increases in pulse 
powers from 0.1 to 0.6 mW, the Brillouin spectrum 
becomes increasingly distorted. This is caused by an 
imbalance between the gain and loss processes, since 
the regime is gain dominant, the loss experienced by 
the PW contributes in creating an asymmetry in the 
output pump spectra. 

In addition to the contributing gain and loss process-
es, birefringence of the optical fiber causes the appear-
ance of  fast and slow axes, which results in two optical 
modes in the fiber with different SBS frequency shifts. 
This causes a mismatch in the corresponding momen-
tum vectors of the acoustic waves, thereby making it 
impossible for both principal axes to be resonant with 
the acoustic phonons. The mismatch in phonon reso-
nance causes a Brillouin shift, ΔυB.

For each power distribution, the spectral shift was 
calculated for each degree of birefringence (Fig. 3(A)).

It is apparent from Fig. 3(A) that the degree of bi-
refringence has a nonlinear effect on the Brillouin shift 
ΔυB. In particular, the larger the birefringence, the 
larger the shift, regardless of the power distribution. 
This spectral shift can in turn be used to quantify the 
birefringence of the optical fiber upon measurement of 
the output signal. Understandably, the largest shifts oc-
cur for the smallest power disparity between the pump 
and pulses, whereas the smallest shift occurs for the 
largest power disparity, since the case of smaller power 
disparity (Fig. 2(f)), yields a greater spectral distor-
tion due to a stronger competing gain and loss process, 
whereas the spectral distortion of Fig. 2(a) is nearly 
noticeable. 

To assess the effect of birefringence on the asymme-
try of the output spectral, the spectral width at half-
maximum on the left, ΔυL, and the spectral width at 
half-maximum on the right, ΔυR, were measured and 
their ratio = ΔυL/ΔυR was calculated. Exemplary ΔυL 
and ΔυR are shown in Fig. 2(f) for clarity, a perfectly 
symmetric spectrum would have a ratio = 1. Figure 
3(B) shows the ratios for the different power distribu-
tions, as well as for different Δn, from which it is con-
firmed that an increase in pulse power increases the 
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spectral distortion (asymmetry) of the output plots. 
Although the general asymmetrical shape is a result 
of the competing gain and loss processes, an increase 
in birefringence contributes to the asymmetry, increas-
ing the disparity between ΔυL and ΔυR, as seen by 
the increase in the ratio, as compared with the case of 

negligible birefringence, Δn = 10-10 with Stokes vector 
S = (0, 0, 0), which has been taken to be a first-order 
approximation to truly unpolarized light. 

In the most general case of elliptical birefringence, 
there are four running acoustic waves, each having 
its own resonance frequency. As a result, each of the 

   
			     (a)				     (b)				    (c)

   

			     (d)				     (e)				    (f)

Fig. 2. Output pump spectra. S = (0.1, 0.9, and 0.42), L = 45 m, P1x = P1y = 1 mW. (a) P2x = P2y = P3x = P3y = 0.1 mW, (b) P2x = 
P2y = P3x = P3y = 0.2 mW, (c) P2x = P2y = P3x = P3y = 0.3 mW, (d) P2x = P2y = P3x = P3y = 0.4 mW, (e) P2x = P2y = P3x = P3y = 0.5 mW, 
and (f) P2x = P2y = P3x = P3y = 0.6 mW. , Δn = 10-4; , Δn = 10-5; , Δn = 10-6; , Δn = 10-10 S = (0, 0, 0).

 
				     (A)				     		  (B)		

Fig. 3 (A) ΔυB dependence on Δn. (B) ratio dependence on Δn. L = 45 m, S = (0.1, 0.9, and 0.42). (a) P2 = P2y = P3x = P3y = 0.1 
mW, (b) P2x = P2y = P3x = P3y = 0.2 mW, (c) P2x = P2y = P3x = P3y = 0.3 mW, (d) P2x = P2y = P3x = P3y = 0.4 mW, (e) P2x = P2y = P3x 
= P3y = 0.5 mW, and (f) P2x = P2y = P3x = P3y = 0.6 mW.
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fast and slow modes has its own resonant frequency at 
which energy transfer occurs. The result is an asym-
metric spectral shape due to the uneven energy trans-
fer along different resonant frequencies. The effects of 
PMD contribute to the spectral distortion seen in Fig. 
3(B), since the existence of  fast and slow axes causes 
the two optical modes to travel at different speeds, and 
arrive at the end of the fiber at differing times[14]. This 
often causes a spectral spreading, and in combination 
with the multiple resonance frequencies can account for 
the increase in distortion. 

Although the gain and loss processes were competing as 
shown earlier, due to the power distributions chosen, the 
regime was mainly gain dominant. For higher pulse pow-
ers, the loss process becomes stronger, making the effects 
of the gain and loss regime comparable. Here the compet-
ing gain and loss regime are investigated. Pulse powers 
were increased from 0.7 to 0.9 mW. 

As can be seen from Fig. 4, the comparable gain and 
loss processes substantially alter the output pump spec-
trum from its previous Lorentzian shape[7,15]. In Fig. 
4(a), the result is dual peaks, whereas in Figs. 4(b) 
and (c), there is a simultaneous gain and loss spectra. 
A spectral shift is still apparent, in Fig. 4(a), the posi-
tions of the two peaks have been measured, whereas 
in Figs. 4(b) and (c) the positions of the peaks and 
troughs have been measured. The results are shown in 
Fig. 5(A), where the same general trend is observed as 
in Fig. 3(A). 

Similar to the analysis of the gain dominant regime, 
to assess the effect of birefringence on the asymme-
try of the output spectra, the disparity between peak 

heights for various degrees of birefringence was mea-
sured. Namely for Fig. 4(a), the height of the peak on 
the left, HL and the height of the peak on the right, HR, 
were measured and their ratio = HL/HR was calculated. 
For Figs. 4(b) and (c), the dip of the peak on the left, 
HL and the height of the peak on the right, HR, were 
measured, and their ratio = HL/HR was calculated. The 
HL and HR for each case is shown in Fig. 4. Figure 5(B) 
shows the ratios for different Δn, for the case of spec-
tral burning depicted in Fig. 4(a), whereas Fig. 5(C) 
shows the ratios for the different power distributions 
and different Δn for the case of simultaneous gain and 
loss depicted in Figs. 4(b) and (c). Similar to the above 
mentioned, a perfectly symmetric spectrum can have a 
ratio = 1.

The dual peak effect of Fig. 4(a) can be explained 
as a result of a sufficiently strong loss process, which 
causes a portion of the pump spectra to become sub-
stantially depleted, but not sufficiently strong enough 
to create a lossy spectrum. It can be seen from Fig. 
5(A) that the disparity between the heights of the 
peaks increases with increasing birefringence, repre-
sented by the decreasing ratio, birefringence contributes 
once again to spectral asymmetry.

However, looking at Fig. 5(C), it is apparent that 
with increasing birefringence, the disparity between 
the gain and loss peaks decreases, represented by the 
ratio becoming closer to 1, hence the asymmetry de-
creases. This can be explained by the same multiple 
resonant frequency argument as was used earlier. The 
same energy transfer that contributed to the increase in 
spectral asymmetry in the gain dominant regime now 

   

			     (a)				     (b)				    (c)

Fig. 4. Output pump spectra. S = (0.1, 0.9, 0.42), L = 45 m, P1x = P1y = 1 mW. (a) P2x = P2y = P3x = P3y = 0.7 mW, (b) P2x = P2y = 
P3x = P3y = 0.8 mW, and (c) P2x = P2y = P3x = P3y = 0.9 mW. , Δn = 10-4; , Δn = 10-5; , Δn = 10-6; ,  
Δn = 10-10 S = (0, 0, 0).
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contributes to creating a more symmetrical simultane-
ous gain and loss spectra in Figs. 4(b) and (c).

As can be seen from Figs. 2 and 4, the effects of PMD 
and PDL caused by birefringence result in a spectral 
distortion effect, similar to the one reported in Refs. 
[7,14] for BOTDA systems. Since elliptical polarizations 
of the interacting pulses include vertical, horizontal, 
and circular components in their Stokes vectors, it is 
therefore expected that the resulting gain can be dif-
ferent from the case of parallel linear alignment, where 
both waves have the Stokes vector (1, 0, 0) and experi-
ence maximum gain along one resonant frequency[3,12,24]. 
In the case of elliptical polarization, wherein there ex-
ists an interaction along all components of the Poincaré 
sphere, an increase in distortion effects is expected, as 
compared with the case of perfectly parallel polarized 
light, often attributed to models of Brillouin gain and 
loss which do not account for polarization[6,10,11,25,26]. In 
the gain dominant regime, this distortion contributes to 
the asymmetry of the output pump spectrum and con-
versely in the competing gain and loss regime, the dis-
tortion contributes to making the output spectra more 
symmetrical. 

The spectral distortion effect is highly detrimental for 
the ODPA-BOTDA sensor system employing Lorentzian 
spectra[10,11], where an inaccurate spectral reading can 
cause inaccuracies in the operation of the sensor. Based 

on the results of this letter, it is therefore beneficial to 
choose powers in the gain dominant regime. Not only 
is the output pump spectrum substantially Lorentzian 
in this regime, but the higher the disparity in power 
between the pump and pulses, the more minimal the 
effect of birefringence is on the spectral distortion of 
the output pulse. 

In conclusion, the most general model of elliptical bi-
refringence in an optical fiber is extended to describe a 
transient Brillouin interaction including both gain and 
loss. We investigate spectral distortion effects related 
to birefringence in the gain dominant and competing 
gain and loss regimes. It is shown that the spectral 
distortion caused by birefringence can be minimized by 
choosing pump and pulse powers with a large disparity.

This work was financially supported by the NSERC Dis-
covery Grants and the Canada Research Chair Program.
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(A)

 

	       (B)		     	         (C)

Fig. 5. (A) ΔυB dependence on Δn. (B) and (C) ratio depen-
dence on Δn. L = 45 m, S = (0.1, 0.9, and 0.42). (a) P2x = P2y 
= P3x = P3y = 0.7 mW, (b) P2x = P2y = P3x = P3y = 0.8 mW, and 
(c) P2x = P2y = P3x = P3y = 0.9 mW.


